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Phonon-Induced Resistivity of Electron Liquids in Quantum Wires
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We study the resistivity of a quantum wire caused by backscattering of electrons by acoustic phonons.
In the presence of Coulomb interactions, backscattering is strongly enhanced at low temperatures due to
Luttinger liquid effects. Information about the strength of the interactions can be obtained from a
measurement of the temperature dependence of the resistivity.
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Interacting electrons in one dimension form a Luttinger
liquid with properties very different from those of the more
familiar Fermi liquid [1]. For one, the low-energy excita-
tions of a Luttinger liquid are not fermionic quasiparticles,
but rather collective spin- and charge-density modes. In
addition, correlation functions, such as the density-density
correlator, decay as power laws with nonuniversal expo-
nents depending on the strength of the interactions.
Ballistic quantum wires [2,3] provide a highly controllable
experimental realization of a one-dimensional (1D) elec-
tronic conductor, and very low electron densities favorable
for the observation of interaction effects can be routinely
achieved. Experiments on quantum wires thus allow us to
test the predictions of the Luttinger liquid theory, and
indeed observations of the power-law decay of correlation
functions [4] and of spin-charge separation [5] have been
reported.

An interesting and well-known consequence of electron-
electron interactions in one dimension is the enhanced
electron backscattering by an impurity [6] in a Luttinger
liquid. In this Letter we show that backscattering of the
electrons in a quantum wire by the three-dimensional
phonons of the surrounding semiconductor heterostructure
is also strongly enhanced by interactions. A measurement
of the phonon-induced resistivity provides information
about the strength of electron-electron interactions and
thus allows us to further test Luttinger liquid theory.
Prior investigations of the interplay between electron-
electron and electron-phonon interactions have been re-
stricted to the case where not only the electronic motion
but also the phonon modes were strictly one dimensional
[7]. For noninteracting electrons the phonon-induced re-
sistance of quantum wires [8–11] and quantum point con-
tacts [12] has also been investigated previously.

At temperatures low compared to the Fermi energy EF a
one-dimensional Fermi system can be viewed as consisting
of two species of fermions, the right and left movers. By
absorbing or emitting phonons the electrons can scatter
either within each branch or between the branches. The
intrabranch scattering leads to the establishment of thermal
equilibrium within each branch but does not affect the
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resistivity of the wire. On the other hand, the interbranch
scattering changes the electric current and thus gives rise to
a finite resistivity. These processes involve phonons with
the component of the wave vector along the wire qx � 2kF,
where kF is the Fermi wave vector. The minimal energy of
such phonons is TA � 2 �hskF, with s being the speed of
sound. Thus at temperatures T � TA the phonon-induced
resistivity is expected [11] to be exponentially small, 
 �


0e�TA=T . The prefactor 
0 is proportional to the square of
the electron-phonon coupling constant, and for noninter-
acting electrons tends to be rather small [12]. We show
below that repulsive interactions between electrons lead to
a dramatic enhancement of 
0. In fact, since the typical
energy transfer TA in a given scattering event is negligible
compared to the Fermi energy EF, electron-phonon scat-
tering is not dissimilar to scattering from static impurities.
Borrowing the well-known result for that problem [6] one
may conjecture that interactions enhance the result for non-
interacting electrons by a factor of order �EF=TA�

1�K
 .
Here the parameter K
 is determined by the interactions;
repulsive interactions correspond to K
 < 1.

We now turn to the calculation of the resistivity 
 of a
quantum wire caused by the scattering of electrons by
acoustic phonons. We evaluate the electric field E in the
wire, assuming that a dc current I flows through it, and
define 
 � dE=dI. In a section of the wire of length L the
electric field accelerates the electrons and increases their
total momentum at the rate _PE � eEnL, where n is elec-
tron density. In a stationary state, _PE is compensated by the
momentum transfer _Pph from the phonon subsystem, _PE �
_Pph � 0. Thus the electric field can be evaluated as

E � �
1

enL
_Pph: (1)

The expression for _Pph will be found in the second order of
perturbation theory in the electron-phonon coupling

He-ph �
Z 1

�1
n�x�	�x�dx; (2)

where n�x� is the operator of electron density at point x,
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and 	�x� is the electric potential created by the phonon-
induced deformation of the crystal. In terms of the phonon
creation and annihilation operators 	�x� can be written as

	�x� �
X
q�

���������������������
�h

2
MV!q�

s
M��q�eiqxx�bq� � by�q��: (3)

Here the operator bq� destroys a phonon with wave vector
q, polarization �, and frequency !q�. The matrix element
M��q� describes the coupling strength, 
M is the mass
density of the material, and V is the sample volume.

The time derivative of the operator P of the system’s
momentum can be found from the Heisenberg equation of
motion. The momentum change rate due to phonon scat-
tering is _Pph � ��i= �h��P;He-ph�. The evaluation of the
right-hand side of this equation gives

_P ph � �
Z L

0
n�x�@x	�x�dx:

Averaging this operator over the state of the wire perturbed
in the first order in the electron-phonon coupling and using
Eq. (1), we find

E � �
i
e �hn

Z 1

�1

Z 1

�1
�I�x; t�@xh	�x; t�	�0; 0�idxdt:

Here �I�x; t� � hn�x; t�n�0; 0�iI is the electronic density-
density correlator. The index I indicates that the expecta-
tion value is calculated with respect to a current-carrying
state.

Using Eq. (3) one can easily evaluate the correlator
h	�x; t�	�0; 0�i and find the following expression for the
electric field in the wire:

E �
1

en

X
q�

jM��q�j2

2
MV!q�
qx

�
Z 1

�1
dt

Z 1

�1
dx�I�x; t�eiqxxfN�!q��ei!q�t

� �N�!q�� � 1�e�i!q�tg: (4)

Here N�!q�� is the equilibrium Bose occupation number
of the phonon state fq; �g.

The typical phonon frequencies in Eq. (4) are of order T
and small compared to the Fermi energy. At small frequen-
cies, the density-density correlator can be presented as a
sum of terms ei2nkFx��n�, where ��n� are slowly varying
functions of x. Contribution of each of these terms to the
electric field (4) accounts for the electron-phonon scatter-
ing processes that transfer jnj electrons between the left-
and right-moving branches. The term with n � 0 corre-
sponds to intrabranch scattering, and to lowest order in
T=EF may be neglected. In the case of scattering by static
impurities the processes with n � 0 have been studied in
Refs. [6,13,14]. The repulsive interactions lead to the
enhancement of the processes with n � �1. Depending
on the strength of the interactions, the remaining processes
may be either suppressed or enhanced. For not too strong
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interactions the jnj> 1 terms can usually be neglected [6],
and, for the moment, we therefore include only the n � �1
components of the correlator � in Eq. (4).

The functions ���1��x; t� can be calculated in the frame-
work of Luttinger liquid theory [1]. For electrons with spin
and at finite temperature they are [15]

���1��x; t� �
1

2"2#2

"
�#"T= �hu
�2

sinh
"Ty�

�hu


sinh
"Ty�

�hu


#
K
=2

�

"
�#"T= �hu&�

2

sinh"Ty
�
&

�hu&
sinh"Ty

�
&

�hu&

#
K&=2

; (5)

where y�' � x� �u't� i#�, u
 and u& are the velocities
of charge and spin excitations, and #� 1=kF is a short
distance cutoff. The dimensionless interaction parameters
K
 and K& quantify the strength of the interactions in the
charge and spin sector, respectively. In the following we
are interested in the spin-rotation invariant case where
K& � 1.

Note that Eq. (5) is valid in the rest frame of the
electrons. In the presence of a driving current I, this frame
moves with a constant drift velocity vd � I=ne relative to
the laboratory frame. We therefore perform a Galilean
transformation to the laboratory frame and replace
�I�x; t� with ��x� vdt; t� [16]. We consider the case of
low current, such that vd � s� u&; u
. Then one can
neglect x in the argument of the slowly varying functions
���1� and substitute ��x; t� � 2 cos�2kF�x� vdt���

�1��0; t�
into Eq. (4). In the linear response regime I ! 0 the
electric field then becomes E1 � 
1I where the resistivity
is given by


1 �
2"R0

�hu
u&

�
2"#T
�hu


�
K
�1X

�

Z d3q

�2"�3
jM��q�j2

2
M!q�

�
F1�

�h!q�

"T �

sinh
�h!q�

2T

*�qx � 2kF�: (6)

Here we have introduced an auxiliary function

F1�z� �
j��

K
�1�iz
2 �j2

��K
 � 1�

and the quantum resistance R0 � " �h=e2.
At low temperature the integrand in Eq. (6) is exponen-

tially small as e� �h!q�=T , and thus the leading contribution
to the resistivity is due to the phonons with the wave vector
qA � �2kF; qAy ; qAz � and polarization � chosen in a way that
minimizes the phonon energy �h!q�. Denoting the energy
of this phonon �h!A � TA, the resistivity at T � TA is


1�T��
R0

��K
�1�

��T�
u
u&

�
#TA
�hu


�
K
�1

e�TA=T;

��T��
X
�

Z dqydqz
�2"�2

jM��q�j2


MT
e���h!q��TA�=T

								qx�2kF

:

(7)
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From here on we concentrate on the experimentally
most relevant case of a quantum wire embedded in a
GaAs heterostructure. The electron-phonon coupling then
has the form M��q� � *�;lDjqj � iM̂��q�. Here D is the
deformation potential for the longitudinal phonons, and
M̂��q� is the piezoelectric coupling which is strongly
direction dependent [17].

At low temperatures T � TA the longitudinal phonon
modes can be ignored. Indeed, the transverse sound veloc-
ity is smaller than the longitudinal one, s � st < sl, lead-
ing to a smaller value of the activation temperature
TA � 2 �hkFs. Furthermore, in this regime we approximate
the piezoelectric couplings by their asymptotic values
jM<

� j
2 � jM̂��qA�j

2. With these approximations we obtain
��T� � �, where

� �
njM<

t j
2

�h
Ms
:

For noninteracting electrons the parameter K
 � 1,
and velocities u
; u& coincide with the Fermi velocity
vF � " �hn=2m. Thus the resistivity Eq. (7) takes the sim-
ple form 
1 � 
0e�TA=T with 
0 � R0�=v2F. For a nu-
merical estimate we assume that the wire is oriented in
the �01�1� direction [3,18], where jM<

t j
2 � 1

4 �ee14=/�
2. In

GaAs s � 3� 103 m=s, the permittivity / � 13:2/0, the
mass density 
M � 5:36 g=cm3, the effective electron
massm � 0:067me, and e14 � 0:16 C=m2. For an electron
density n � 25 0m�1 the Fermi velocity is vF �
7� 104 m=s, and we estimate 
0 � 0:03R0 0m�1. The
activation temperature in this example is TA � 2 K.

In an interacting wire one can estimate the velocities of
the charge and spin excitations as u
 � vF=K
 and u& �

vF, respectively. With #� 1=kF we see that interactions
enhance the preexponential factor in Eq. (7) by
��vF=2s�

1�K
 relative to the noninteracting case. To esti-
mate the interaction parameter we use [19]

K
 �
1��������������������������

1� � 2
" �h�

2 me2
nC

q ;

where C is the capacitance per unit length of the wire
relative to a nearby metallic gate. If the gate is modeled
as an infinite conducting plane at a distance d from the
wire, the capacitance is C � 2"/=ln�8:0nd� [20]. For a
gate-wire distance d � 100 nm and electron density n �
25 0m�1 the interaction parameter becomes K
 � 0:3.
With this estimate the resistance enhancement is roughly
�vF=2s�

1�K
 � 5.
We now turn to the high temperature limit T � TA and

first consider the case of low electron density n where
interaction effects are expected to be most pronounced.
Assuming T � �hu
=#� EF=K
, from Eq. (6) we obtain


1�T� � R0

~�F1�0�

u
u&

�
2"#T
�hu


�
K
�1 T

TA
ln
�
T
TA

�
: (8)
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Again, interactions are found to enhance the phonon-
induced resistivity. Furthermore, in this regime a measure-
ment of the temperature dependence of the resistivity
provides direct information about the interaction parameter
K
. The parameter ~� in Eq. (8) is defined as

~� �
X
�

njM>
� j

2s

2 �h
Ms
2
�

;

where both the transverse and longitudinal phonon modes
are now included. The piezoelectric coupling functions
were approximated by their high energy asymptotes
jM>

� j
2 � limq?=kF!1hjM̂��2kF; q? cos�2�; q? sin�2��j2i2,

where the angular brackets indicate angle averaging over
directions perpendicular to the wire. Such an approxima-
tion is possible since scattering in the regime T � TA is
dominated by phonons with q� 2kF and qx � 2kF. For
the �01�1� direction we find jM>

t j
2 � 5

64 �ee14=/�
2 and

jM>
l j

2 � 9
16 �ee14=/�

2. With sl � 5:2� 103 m=s for the
longitudinal sound velocity in the �01�1� direction, we
find R0

~�=v2F � 0:03R0 0m�1. When deriving Eq. (8)
we neglected coupling via the deformation potential as-
suming that q� jee14=�/D�j. For low enough electron
densities this is consistent with q� 2kF � qx [21].

Up to here, we treated electrons as purely one dimen-
sional; i.e., the width of the wirewwas assumed to be small
compared to k�1

F . This condition is not satisfied on the
high-density side of the first conductance plateau, where
kF � 1=w. If we allow for a lateral extension of the elec-
tron wave functions of order w, an effective momentum
cutoff �1=w is introduced into Eq. (6). The resistivity can
then be calculated from these modified equations, and in
the limit T � TA we find


1�T� � R0
�DF1�0�

Au
u&

�
2"#T
�hu


�
K
�1 T

TA
: (9)

The parameter �D and the effective wire cross section A
are defined as

�D �
"D2ns

�h
Ms2l
;

1

A
�

Z
dydzj �y; z�j4;

where  �y; z� is the wave function for transverse motion in
the lowest subband. In the high-density regime discussed
here it is safe to assume that coupling is mainly via the
deformation potential. For noninteracting electrons the
resistivity takes the simple form 
1 � 
0T=TA, where

0 � R0�D=�Av2F�. At a density n � 100 0m�1 and A �
100 nm2 we get 
0 � 0:01R0 0m�1. Here we used D �
7 eV for the deformation potential in GaAs.

So far we have limited the discussion to 2kF scattering
where only a single electron is transferred between the left-
and right-moving branches in any given scattering event.
This is justified if interactions are not too strong. To under-
stand this we consider the long-time limiting behavior of
the density-density correlator. From Eq. (5) we see that
���1� / 1=tK
�K& while the next contribution is known [1]
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to decay as ���2� / 1=t4K
 . This second term thus domi-
nates at K
 < 1=3. This is due to the absence of K& from
the exponent of the n � �2 terms, which can be under-
stood from the fact that in a two-particle scattering process
it is possible to transfer a pair of electrons with zero total
spin. Contributions to the density-density correlator with
jnj> 2 always decay faster than the two leading contribu-
tions and can therefore be neglected.

For purely elastic scattering, as is the case for static
impurities [1], the 4kF contribution would thus dominate
at K
 < 1=3. In the case of electron-phonon scattering in
the low-temperature regime T � TA, however, the resis-
tivity due to 4kF scattering is negligibly small. Indeed, the
activation energy for a process with a momentum transfer
4kF is 2TA, and such processes are thus exponentially
suppressed relative to 2kF scattering.

On the other hand, at temperatures T � TA the 4kF
scattering cannot be neglected. The resistivity then is the
sum of a contribution 
1�T� due to scattering events with a
2kF-momentum transfer, and a contribution 
2�T� due to
4kF scattering. To calculate the latter we proceed in exactly
the same way that led us to Eq. (8) but this time use
���2��x; t� instead of ���1��x; t�. Up to a constant which
cannot be determined within the Luttinger liquid approach,
the functions ���2��x; t� are obtained from Eq. (5) by sub-
stituting K& ! 0 and K
 ! 4K
 [1]. As a result we find

2�T� � 
1�T��D
=T�

3K
�1, where D
 � �hu
=# is the
bandwidth of charge excitations. As expected, scattering
processes with a 2kF-momentum transfer dominate for
weak interactions, while 4kF scattering is most relevant if
interactions are strong, K
 < 1=3.

We have shown that electron-electron interactions
strongly enhance the phonon-induced resistivity of a quan-
tum wire. A measurement of the temperature dependence
of the resistivity provides information about the strength of
these interactions. The phonon-induced resistivity can be
explored experimentally in a four-terminal measurement
similar to that of Ref. [22]. Since phonon effects can be
subtle, in a two-terminal measurement they are best ob-
served for reflectionless coupling between the one-
dimensional wire and the two-dimensional leads when
the contact resistance takes the constant value R0 �
" �h=e2 independent of temperature [23]. Prior experimen-
tal work [2,3] does not allow us to unambiguously extract
phonon effects. The temperature dependence of the resist-
ance reported in Ref. [2] is most probably due to nonideal
coupling between the two-dimensional leads and the wire
while the experiment of Ref. [2] was done at very low
temperatures where phonon effects are expected to be
exponentially small [cf. Eq. (7)].
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